Автомобильные системы зажигания сейчас в основном построены на тиристорах [1], тем не менее, транзисторные системы не потеряли своей актуальности [2, 3]. В последнее время выпускается много мощных, в том числе составных, транзисторов с характеристиками, позволяющими использовать их для автомобильных систем зажигания.

Предлагаемая схема автомобильного электронного блока зажигания разработана и испытана автором в автомобиле "Жигули 2108" и др., в которых применяются транзисторные коммутаторы (3620-3734) с бесконтактным датчиком Холла (53.013706).

Отличием данной конструкции от штатной [2] является то, что для формирования импульсов прерывания используется микросхема К561ЛА8, включенная по схеме триггера Шмитта.

Технические характеристики практически не отличаются от штатного блока зажигания, но с применением триггера Шмитта импульсы прерывания формируются с более крутым задним фронтом, что позволяет практически мгновенно отключать источник тока от катушки зажигания, тем самым повышая высокое напряжение на ее вторичной обмотке.

Применение конденсатора С2 обеспечивает отключение катушки зажигания от источника тока при остановке двигателя автомобиля, тем самым предотвращая бесполезный нагрев катушки.

Блок электронного зажигания

Схема блока электронного зажигания, изображенная на рис.1, содержит:

- схему формирования импульсов с регулируемой скважностью на микросхеме DD1. собранную по схеме триггера Шмитта;
- мощный ключ на транзисторах VT1 и VT3 с активным ограничителем тока на транзисторе VT2,делителем напряжения на резисторах R8, R9 и токоизмерительным резистором R10;
- стабилизатор напряжения для питания микросхемы DD1 на стабилитроне VD4, конденсаторе СЗ и резисторе R3;
- схему защиты от превышения импульсного напряжения в бортовой сети на стабилитроне VD6, конденсаторе С4 и резисторе R11;
- схему защиты блока от неверного присоединения аккумуляторной батареи на диоде VD7;
- схему защиты транзистора VT3 от импульсных перегрузок при работе катушки зажигания на диоде VD5. резисторах R12, R13.

Работает схема следующим образом. При включении зажигания напряжение от аккумуляторной батареи подается на схему через диод VD7 и резистор R 11. На катушку зажигания напряжение в начальный момент не поступает, так как стартер не вращает вал двигателя, и на входе микросхемы DD1.2 отсутствуют импульсы. На выходе DD1 присутствует напряжение низкого уровня, которое удерживает транзистор VT1 в закрытом состоянии, поэтому закрыт и транзистор VT3.

Когда стартер поворачивает вал двигателя, на выходе датчика возникают импульсы, поступающие через С2 на вход элемента DD1.1. Последний переключается, и на выходе DD1.2 появляется импульс, который открывает транзисторы VT1 и VT3. Через катушку зажигания проходит ток, и в магнитном поле катушки накапливается электрическая энергия. В следующий момент, когда с выхода датчика исчезает импульс положительной полярности, триггер Шмитта резко переключается в обратное состояние, на выходе элемента DD1.2 появляется низкий уровень, поступающий на базу транзистора VT1. Транзисторы VT1 и VT3 быстро закрываются, и ток, проходящий через катушку зажигания, также быстро исчезает. При этом в первичной обмотке катушки индуцируется ЭДС самоиндукции напряжением 400 В, а во вторичной обмотке катушки зажигания возникает импульс высокого напряжения - 23000...25000 В.

В мощном ключе на транзисторах VT1 и VT3 применена схема активного ограничения тока в катушке зажигания, которая защищает транзистор VT3 от перегрузки и стабилизирует величину тока"разрыва"при колебаниях питающего напряжения бортовой сети автомобиля, тем самым обеспечивая неизменность выходных характеристик системы зажигания [З].

При отпирании транзистора VT1 выходной транзистор VT3 насыщается, обеспечивая низкую величину остаточного напряжения на выходе блока электронного зажигания. Пока ток, протекающий через выходной транзистор VT3 и токоизме-рительный резистор R10, включенный в его эмиттерную цепь, ниже допустимого уровня ограничения, транзистор VT2 заперт.

При достижении выходным током предельного уровня,транзистор VT2 начинает открываться, и потенциал на его коллекторе понижается, что приводит к уменьшению величины тока управления. Транзистор VT3 при этом выходит из режима насыщения в активный режим, напряжение на выходе возрастает до уровня, при котором поддерживается заданный режим тока ограничения. В случае превышения импульсного напряжения в катушке зажигания, оно через делитель R12-R13 подается на стабилитрон VD5, который, открываясь, запирает транзистор VT3. Цепочка C5-R14, включенная параллельно выходному транзистору, является элементом колебательного контура ударного возбуждения, т.е. определяет величину и скорость нарастания вторичного напряжения, развиваемого системой зажигания. Резистор R14 ограничивает емкостный ток через транзистор VT3 в момент отпирания последнего, если конденсатор С5 разряжен. Конструктивно блок электронного зажигания выполнен на печатной плате (рис.2) из одностороннего фольгиро-ванного стеклотекстолита размером 95х75 мм, на которой смонтированы элементы схемы. Плата устанавливается в штатный корпус от коммутатора 3620-3734.

В электронном блоке зажигания использована микросхема К561ЛА8 и резисторы МЛТ. Резистор R10 - типа С5-16 мощностью не менее 1 Вт. Конденсаторы - К73-11 на напряжение не менее 63 В. Диоды VD2, VD3 - КД521А или любые кремниевые маломощные. Стабилитрон VD1 - на напряжение стабилизации 8 В, типа Д814А или КС182А. Стабилитрон VD4 - на напряжение стабилизации 9 В, типа Д814Б или КС191А. Стабилитрон VD5 - КС518А или КС508Г. Диод VD7 - типа КД209А, можно заменить диодом КД226Г. Транзисторы VT1, VT2 - КТ972А; VT3 - КТ898А или КТ890А (КТ8109А). VT3 устанавливается на штатный радиатор из алюминиевой пластины толщиной 4 мм, изолированный от корпуса двойной слюдяной прокладкой с термопроводной пастой.

Для налаживания блока применяется звуковой генератор с частотой от 30 до 400 Гц, имитирующий работу датчика прерывателя. Для получения выходного сигнала напряжением 7...9 В, в случае необходимости, к нему нужно изготовить усилитель мощности на транзисторе КТ815 [4]. Для просмотра импульсов годится любой осциллограф, лучше двухлучевой. Кроме того, необходим блок питания с регулировкой напряжения от 8 до 18 В с током не менее 10 А.

На момент настройки схемы можно обойтись без катушки зажигания, нагрузив коллектор транзистора VT3 на дроссель с магнитопроводом из пластин электротехнической стали индуктивностью 3,8 мГн, сопротивлением 0,5 Ом. Для этого можно использовать унифицированный низкочастотный дроссель типа Д 179-0,01-6,3. Генератор-имитатор датчика импульсов подключают на вход схемы и наблюдают на осциллографе форму и амплитуду выходных импульсов.

Изменением сопротивлений в цепях VD2-R4 и VD3-R5 можно регулировать скважность импульсов, что позволяет регулировать время замыкания и размыкания катушки зажигания.

Для установки необходимого тока ограничения осциллограф подключают к эмиттеру транзистора VT2. При этом в эмиттерную цепь транзистора VT2 необходимо временно подключить резистор сопротивлением 0,1 Ом. Изменяя напряжение на блоке питания, наблюдают появление сигнала на эмиттере. Регулировка уровня ограничения тока производится резисторами R12 и R13. После предварительной настройки схему устанавливают в автомобиле в соответствии со схемой подключения [2] и производят ее окончательную настройку.

Литература:

1. Ломакин Л. Электроника за рулем. - Радио, 1996, N8, С.58,
2. Старков В. Транзисторные системы зажигания - Радио, 1991, N9. С.26-29.
3. Бела Буна. Электроника на автомобиле. - М.: Транспорт,1979.
4. Автомобили "Жигули 2108" и их модификации. Устройство и ремонт. - М.: Транспорт,1987.
5. Ютт В.Е. Электрооборудование автомобилей: Учебник. - М.: Транспорт,1989, 175с.
6. Сидорчук В. Электронный октан-корректор. - Радио, 1991, N11, С.26.

Автор: Г.Скобелев, г.Курган; Публикация: Н. Большаков, rf.atnn.ru

Автолюбители, установившие на свой автомобиль электронную систему зажигания наверное уже оценили ее преимущества. Контактный же прерыватель продолжает по-прежнему доставлять хлопоты. Эрозия, окисление, загрязнение контактов заставляют автолюбителя периодически проводить работу по поддержанию их рабочего состояния. Избавиться от этих забот можно, если дополнить электронную систему зажигания формирователем импульсов с бесконтактным датчиком.

Известно несколько типов датчиков, способных работать в бесконтактных системах зажигания - фотоэлектрические, гальваномагнитные, параметрические. К параметрическим относят те датчики, в основе работы которых лежит превращение изменения измеряемой величины в изменение параметра - емкости, индуктивности, сопротивления, магнитного сопротивления. Наиболее доступен для изготовления в любительских условиях параметрический электромагнитный датчик. Его работа основана на свойстве магнитопровода катушки, в которой протекает переменный электрический ток, изменять свое магнитное сопротивление при введении в зазор магнитопровода ферромагнетика с малым удельным магнитным сопротивлением.

В литературе неоднократно были описаны параметрические датчики для бесконтактной системы зажигания, например [1,2,3]. В этих конструкциях катушка датчика, намотанная на Ш-обраэном ферритовом магнитопроводе, входит в состав блокинг-генератора. У такого решения много недостатков - сложность изготовления в любительских условиях магнитопровода датчика, слишком малый зазор между магнитопроводом и переключающим диском, значительный потребляемый ток.

Ниже описана конструкция бесконтактного прерывателя с электромагнитным датчиком, свободная от указанных недостатков. Бесконтактный прерыватель может работать совместно со всеми модификациями электронных систем зажигания промышленного изготовления ("Электроника", "Искра", "ПАЗ"), а также с любительскими конструкциями, описанными в [1.4,5].

Эти электронные системы зажигания рассчитаны на подключение контактного прерывателя, поэтому входной узел у них построен таким образом, чтобы обеспечить ток через замкнутые контакты прерывателя 70...180 мА. Столь значительный ток выбран для уменьшения чувствительности системы к состоянию контактов прерывателя . Обязательным для электронной системы зажигания является узел подавления дребезга контактов. Применение же бесконтактного прерывателя позволяет исключить из системы узел подавления дребезга контактов, выбрать гораздо меньший ток входного узла и таким образом сделать ее более надежной и экономичной. В рамках этой статьи просто невозможно дать рекомендации по модернизации готовых систем зажигания, поскольку существует множество схемных решений как промышленных, так и любительских.

Принципиальная схема бесконтактного прерывателя показана на рис.1. Датчик представляет собой катушку 11, которая вместе с конденсатором СЗ входит в состав генератора, выполненного на транзисторах VT1.1, VT1.2 микросборки VT1. При вхождении зубца диска в зазор магнитопровода катушки происходит срыв колебаний генератора, так как энергия электромагнитного поля катушки расходуется на образование вихревого тока в зубце.

Бесконтактный прерыватель электронной системы зажигания

В этот момент ток коллектора транзистора VT1.1 уменьшается, вызывая увеличение напряжения на коллекторе. Триггер Шмитта, выполненный на транзисторах VT2, VT3, формирует сигнал с крутыми фронтом и спадом. Транзистор VT4 работает в режиме переключения.

Вхождение зуба переключающего диска в зазор датчика соответствует моменту замыкания контактов прерывателя. Эквивалентный угол замкнутого состояния контактов определяется в основном угловой шириной зубца диска; этот угол выбран равным 50°. Небольшая погрешность в определении угла замкнутого состояния контактов обусловлена гистерезисом триггера Шмитта.

Температурная стабилизация генератора обеспечена отрицательной обратной связью по постоянному току через резистор R2, включенный в цепь эмиттера транзистора VT1.1, диодной термокомпенсацией (диодное включение транзистора VT1.2) и применением согласованной пары транзисторов, размещенных на одном кристалле. Ток через эмиттерный переход транзистора VT1.2 вы бран небольшим, около 1,5 мА. Благодаря этим мерам стабильность режима генератора сохраняется в температурном интервале -48...+90°С.

Бесконтактный прерыватель электронной системы зажигания

Напряжение питания генератора и триггера Шмитта фиксировано стабилитроном VD1, что исключает зависимость момента зажигания от напряжения бортовой сети автомобиля. Светодиод HL1 служит для установки момента зажигания и визуального контроля работы прерывателя.

Катушка L1 намотана на кольцевом магнитопроводе типоразмера 1(7х4х2 из феррита 2000НМ. В магнитопроводе пропилен сквозной паз шириной 3 мм, а обмотка размещена на стороне, противоположной пазу. Обмотка состоит из 37+50 витков провода ПЭВ-2 0,12. Ширина намотки - 3,5...4 мм. Магнитопровод в месте намотки необходимо обмотать одним слоем лакоткани или покрыть несколькими слоями лака.

К обмотке припаивают выводы длиной 200 мм из провода МГТФ, изолируют места пайки и вставляют катушку в экранирующую коробку с прорезью спереди. Положение магнитопровода 5 в коробке 2 и размещение ее на крепежном фланце 1 иллюстрирует рис.2. Коробку можно изготовить из листовой латуни или меди (но не стали) толщиной 0,2...0,4 мм. Магнитопровод фиксируют относительно прорези, вставив в нее вкладыш из пористой резины, обернутый полиэтиленовой пленкой, после чего заливают коробку эпоксидной смолой.

После затвердевания смолы коробку припаивают к фланцу 1, выполненному из фольгированного стеклотекстолита, латуни или стали. Жгут выводов 3 закрепляют на фланце хомутом 4, фиксированным пайкой.

В электронном узле применены резисторы МЛТ, конденсаторы К1-7 (С1 - СЗ), К53-14 (С4, С5). Транзисторную сборку КР159НТ1Б заменять отдельными транзисторами крайне нежелательно, так как ухудшится стабильность генератора, особенно в области отрицательных значений температуры.

Все детали формирователя, кроме катушки L1, размещены на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертеж платы представлен на рис.3. Плату, установленную в прочную, плотно закрывающуюся коробку, следует монтировать возможно ближе к прерывателю-распределителю автомобиля.

Налаживание формирователя сводится к подборке резистора R3. Подключив вольтметр к коллектору транзистора VT1.1, подбирают этот резистор по минимуму показаний вольтметра - напряжение должно быть 2...3 В. Затем вводят в прорезь датчика стальную пластину. При этом показания вольтметра должны увеличиться до 6...6,5 В.

Конструкция зубчатого диска, рассчитанного для установки на четырехцилиндровый двигатель, показана на рис.4. Диск можно изготовить из любой малоуглеродистой мягкой стали. Его фиксируют стопорными винтами на кулачке прерывателя.

Бесконтактный прерыватель электронной системы зажигания Бесконтактный прерыватель электронной системы зажигания

Установка катушки в прерыватель имеет особенности, зависящие от типа прерывателя-распределителя зажигания. Ниже рассматривается вариант ее монтажа в прерыватель-распределитель Р-118 автомобиля "Москвич-412". Для этого нужно последовательно снять распределитель, "бегунок" и вакуумный регулятор. Затем, вывернув винты крепления неподвижной пластины к дну прерывателя, снять ее, разъединить подвижную и неподвижную пластины. Снять с подвижной пластины контакты в сборе и спилить латунную ось контактной стойки заподлицо с пластиной. Высверлить алюминиевую заклепку крепления стойки фильца смазки кулачка и снять фильц.

На подвижной пластине просверлить в соответствии с рис.5 два отверстия сверлом диаметром 2,1 мм и нарезать резьбу М2,5 для крепления катушки-датчика. Восстановить соединение пластин и закрепить на подвижной пластине двумя винтами М2,5 фланец с датчиком. Установить пластины на место, надеть зубчатый диск на кулачок, отрегулировать положение его зубца в пазу датчика так, чтобы зазоры сверху и снизу были одинаковы и зафиксировать диск двумя стопорными винтами М2.

После выполнения всех электрических соединений включить зажигание и, поворачивая пусковой рукояткой коленчатый вал двигателя, убедиться в срабатывании бесконтактного прерывателя по зажиганию и погасанию светодиода. Затем можно приступить к установке момента зажигания. Методика этого процесса хорошо описана в инструкции по эксплуатации автомобиля. Моменту зажигания соответствует включение светодиода.

Плату формирователя можно встроить в кожух электронной системы зажигания.

Литература

1. В.Стаханов. Транзисторные системы зажигания. - Радио, 1991. 1989, с.26-29.
2. A.Х.Синельников. Электронные приборы для автомобилей. - М.: Энергоатомиздат, 1986.
3. В.Горкин, А.Федоров. Бесконтактная система зажигания. - Сб. "В помощь радиолюбителю". вып.73. - М.: ДОСААФ, 1981.
4. Ю.Сверчков. Стабилизированный многоискровой блок зажигания. - Радио, 1982, № 5, с.27-30.
5. Г.Карасев. Стабилизированный блок электронного зажигания. - Радио, 1988, № 9, с.17,18.

Автор: А.Колотов, г. Бердск; Публикация: Н. Большаков, rf.atnn.ru

В настоящее время многие автолюбители проявляют повышенный интерес к устройствам электронного регулирования угла опережения зажигания (УОЗ) или октан-корректорам (ОК), которые позволяют на 5...10% сэкономить топливо, получить максимальную мощность, снизить токсичность выхлопа, а также адаптировать двигатель к топливу различного качества. Существующие схемные решения имеют некоторые недостатки:

- задержка производится на фиксированный период времени, что при разных оборотах вала двигателя соответствует разному УОЗ [1, 2];

- при построении схем задержки без фиксированного УОЗ значительно возрастает их сложность [3, 4, 5].

С учетом вышесказанного нами разработан простой и эффективный ОК, в котором при любых оборотах вала двигателя УОЗ остается постоянным. Структурная схема ОК показана на рис. 1. В основу его работы заложен факт пропорциональности задержки УОЗ периоду вращения вала. Последовательность импульсов, в которой в некоторых пределах необходимо произвести задержку положительного фронта, формируется прерывателем и поступает на вход схемы.

Корректор угла опережения зажигания

При этом длительность паузы используется как опорная величина, которая фиксируется с помощью генератора опорной частоты G1 и реверсивного счетчика СТ, который при низком уровне на входе (±1) работает на увеличение счета (накапливание информации), а при наличии на том же входе высокого уровня - на уменьшение (считывание накопленной информации). В первом случае работает генератор G1, а во втором - генератор G2 (а G1 блокируется). Частоту G2 можно изменять. При равенстве частот G1 и G2 задержка УОЗ составляет 90°, поэтому для обеспечения задержки до 30° необходимо, чтобы частота G2 была в три и более раза выше частоты G1. По окончании счета, когда счетчик отдал всю накопленную информацию, на его выходе Р формируется сигнал, который устанавливает на выходе RS-триггера высокий уровень, блокирует работу счетчика и является задержанным выходным сигналом. В исходное состояние схема возвращается при приходе на ее вход низкого уровня, который сбрасывает RS-триггер, и цикл повторяется.

Принципиальная схема ОК и диаграммы ее работы показаны на рис.2 и рис.3 соответственно. На входе схемы установлен фильтр низкой частоты на элементах R3, C3, который совместно с ячейками DD1.1, DD1.4, содержащими на входе триггеры Шмитта, исключает влияние дребезга контактов прерывателя на работу схемы. Генератор G1 собран на DD1.3, DD1.2, R7, С2 и для исключения переполнения счетчиков DD2, DD3 при низких оборотах вала двигателя настроен на частоту 1 кГц. Генератор G2 собран на DD1.1, DD1.2, R4, R5, С1 и с помощью переменного резистора R4 может изменять свою частоту от 3 кГц до 90 кГц , что обеспечивает регулировку УОЗ от 30°С до 1 ° соответственно. Счетчики DD2, DD3 включены каскадно, что позволило увеличить их общую емкость до 256 бит.

Корректор угла опережения зажигания
Рис.2

Счетчики сначала накапливают информацию о длительности замкнутого состояния контактов прерывателя, а после их размыкания считывают ее. При полном обнулении счетчиков на выводе 7 DD3 появляется кратковременный отрицательный импульс, который через DD4.3 переключает RS-триггер, собранный на DD4.2, DD4.4. На инверсном выходе триггера формируется сигнал блокировки счетчика DD2 и через DD4.1, R6, VT -выходной задержанный сигнал.

Корректор угла опережения зажигания

Детали:

Микросхему К561ТЛ1 можно заменить на К561 ЛА7, но при этом после фильтра НЧ необходимо установить триггер Шмитта, собранный по любой известной схеме. Стабилитрон VD1 - любой на напряжение 5...9 В. Транзистор КТ972 можно заменить парой КТ3102, КТ815 (КТ817). Конденсаторы C1, C2 необходимо выбрать однотипными или с одинаковым, как можно ближе к нулевому значению, ТКЕ. То же касается и резисторов R5, R7. Параллельно каждой микросхеме по шинам питания желательно установить керамический конденсатор емкостью 0,1 мкФ, а параллельно VD1 -танталовый электролитический конденсатор.

Настройка

Для настройки генераторов необходимо установить щуп частотомера на вывод 4 микросхемы DD1. После этого на вход схемы следует подать низкий логический уровень и подобрать резистор R7 так, чтобы частота генератора составила 1 кГц. После этого - установить ползунок резистора R4 в нижнее по схеме положение, подать на вход высокий логический уровень и подобрать резистор R5 так, чтобы показания частотомера равнялись 90 кГц , что соответствует задержке УОЗ в 1 °.

В верхнем положении ползунка R4 частота генератора должна быть около 3 кГц , что соответствует задержке УОЗ в 300. При желании эту величину можно изменять в большую или меньшую сторону, изменяя номинал R4. После этого остается отградуировать шкалу резистора R4, который устанавливается на панели управления. Провода к нему желательно экранировать.

Литература

1. Ковальский А., Фролов А. Приставка октан-корректор. Радио. - 1989.-№6.-C.31.
2. Сидорчук В. Электронный октан-коррехтор. Радио. -1989. - № 6. -C.31
3. Беспалов В. Корректор угла ОЗ. Радио. - 1988. - № 5. - С. 17.
4. Архипов Ю. Цифровой регулятор угла опережения зажигания. Радиоежегодник.-М.,1991.-С129.
5. Романчук А. Октан-корректор на КМОП микросхемах. Радиолюбитель. -1994.-№5.-C.25.

Авторы: В.Петик, В.Чемерис, г. Энергодар; Публикация: Н. Большаков, rf.atnn.ru

Прибор для установки угла опережения зажиганияТочная установка момента зажигания горючей смеси в цилиндрах двигателя автомобиля - процесс кропотливый, требующий определенного навыка и больших затрат времени. Описываемый ниже прибор позволяет быстро и легко выполнить эту операцию в любых условиях.

Действие прибора основано на использовании стробоскопического эффекта. Если мгновенными вспышками света, синхронизированными с импульсами высокого напряжения на запальной свече первого цилиндра, освещать установочные метки на ободе маховика и корпусе работающего двигателя, то подвижная метка будет зрительно казаться неподвижной. Если угол опережения выставлен неверно, то по взаимному расположению меток легко определить, в какую сторону и на сколько необходимо повернуть планку регулятора угла опережения зажигания.

Схема прибора изображена на рис. 1. Источником света в приборе служит импульсная фотолампа H1. Прибор питается от аккумуляторной батареи (напряжением 12 В, с корпусом соединен минусовой вывод) автомобиля, двигатель которого регулируют. Напряжение питания, необходимое для работы лампы (около 250 В), дает преобразователь на транзисторах V1 и V2 и трансформаторе Т1 и выпрямитель на диодной сборке V3. Поджигающий импульс снимается со свечи первого цилиндра через ограничительные резисторы R4-R6.

Прибор для установки угла опережения зажигания
рис. 1

Трансформатор намотан на магнитопроводе Ш 16Х20. Обмотки / и /// наматывают одновременно в два провода ПЭВ-2 0,5, число витков-21. Таким же образом наматывают и обмотку // (7 витков провода ПЭВ-2 0,15), причем начало одной полуобмотки нужно соединить с концом другой-это соединение будет служить отводом. Обмотка IV содержит 500 витков провода ПЭВ-2 0,2. Конденсаторы С2 и С3- бумажные на рабочее напряжение не менее 400 В. Транзисторы V1 и V2 желательно подобрать близкими по параметрам. Резистор R1 проволочный, остальные- МЛТ.

Конструктивно прибор состоит из двух узлов: осветителя и переходника. Внешний вид осветителя показан в заголовке статьи. Он выполнен в виде пистолета. В футляре размещены все детали прибора, кроме резисторов R4-R6. Основанием, на котором установлены детали осветителя, служит металлическая фигурная пластина, расположенная в футляре вертикально. Размещение деталей на пластине показано на рис. 2. Спереди размещен рефлектор с импульсной лампой (использован без переделки от фотовспышки "Луч-70"). Кнопка S1 прибора смонтирована в ручке. Футляр склеен из листового пластика.

Прибор для установки угла опережения зажигания
Рис. 2. Вид на монтаж осветителя: 1 - рассеиватель.
2 - рефлектор с импульсной лампой, 3 - накопительные конденсаторы,
4 - теплоотводы, дюралюминий. 5 - транзисторы, 6 - электролитические
конденсатор К50-6, 7 - монтажная плата, стеклотекотолит,
8 - диодная сборка КЦ402И, 9- пластина-основание, дюралюминий.
10 - трансформатор. 11 - резистор МЛТ-23,6 к

Устройство переходника показано на рис. 3. В корпусе 3, выточенном в виде трубки из твердого теплостойкого изоляционного материала (текстолита, гетинакса), смонтированы резисторы R4-R6. Провод, соединяющий переходник с осветителем, должен быть с изоляцией, рассчитанной на напряжение не менее 15 кВ.

Прибор для установки угла опережения зажигания

В радиальном отверстии корпуса переходника смонтирован стальной стержень 4, оканчивающийся с нижнего (по рис. 3) конца пружинным зажимом для фиксации на выводе запальной свечи двигателя, а с верхнего - резьбовым наконечником 2, аналогичным по форме выводу свечи.

Правильно собранный прибор налаживания не требует. Работают с прибором в следующем порядке. Со свечи первого цилиндра (при остановленном двигателе) .снимают контактный колпак, надевают на ее вывод переходник . прибора и на переходник надевают колпак свечи. Подают питание на прибор (вилку шнура питания прибора включают в розетку бортовой сети автомобиля). На кожухе маховика снимают крышку смотрового окна и запускают двигатель. Нажимают на кнопку включения прибора и направляют его свет на маховик. Если метки на маховике и корпусе двигателя не совпадают, смещают планку регулятора угла опережения зажигания до совпадения меток. Затем двигатель останавливают и отключают прибор.

Автор: В.Руденко, г. Москва; Публикация: Н. Большаков, rf.atnn.ru

Экономические, мощностные и эксплуатационные параметры двигателя автомобиля в значительной степени зависят от правильной установки угла опережения зажигания (03). Заводская установка угла 03 пригодна не для всех случаев, и поэтому его приходится корректировать, находя более точное значение в зоне между появлением детонации и заметным уменьшением мощности двигателя.

Известно, что при отклонении от оптимального угла ОЗ на 10 град расход горючего может возрасти на 10 % [1 ]. Часто требуется значительно изменять начальный угол ОЗ в зависимости от октанового числа бензина, состава горючей смеси и реальных дорожных условий. Недостатком применяемых на автомобилях центробежных и вакуумных регуляторов является невозможность регулировки угла ОЗ с рабочего места водителя во время движения. Описываемое ниже устройство допускает такую регулировку.

От подобных по назначению устройств [2, 3, 4] электронный корректор отличается простотой схемы и широким диапазоном дистанционной установки начального угла ОЗ. Корректор работает совместно с центробежным и вакуумным регуляторами. Он защищен от влияния дребезга контактов прерывателя и от помех бортовой сети автомобиля. Кроме коррекции угла ОЗ, устройство позволяет измерять частоту вращения коленчатого вала двигателя. От цифрового корректора [5] описываемый отличается тем, что обеспечивает плавную регулировку угла коррекции, содержит меньшее число деталей и несколько проще в изготовлении. Основные технические характеристики Напряжение питания. В 6...17 Потребляемый ток при неработающем двигателе. А, при замкнутых контактах прерывателя 0,18 при разомкнутых контактах прерывателя 0,04 Частота запускающих импульсов. Гц... 3,3...200 Установочный начальный угол ОЗ на распределителе, град.... '20 Пределы дистанционной коррекции угла ОЗ. град........ 13...17 Длительность импульса задержки, мс: наибольшая.... 100 наименьшая.. ,. 0,1 Длительность выходного импульса коммутации, мс........ 2.3 Максимальное значение выходного коммутируемого тока. А... 0.22 Работа двигателя при установочных углах, заданных корректором, возможна в том случае, если импульс от прерывателя задержан на время

T3=(Фр-Фк)/6n=(Фр-Фк)/180*Fn

где Фр, Фк - начальный угол ОЗ, установленный распределителем и корректором соответственно; п - частота вращения коленчатого вала; Fn=n/30 частота искрообразования.

Корректор угла ОЗ
Puc.1

На рис. 1 в логарифмическом масштабе показаны зависимости длительности времени задержки искрообразования от частоты вращения коленчатого вала, вычисленные при различных значениях начального угла ОЗ, установленного корректором. Этим графиком удобно пользоваться при налаживании и градуировке устройства.

Корректор угла ОЗ
Puc.2

На рис. 2 изображены характеристики и пределы изменения текущего значения угла ОЗ в зависимости от частоты вращения коленчатого вала двигателя. Кривая 1 показана для сравнения и иллюстрирует эту зависимость для центробежного регулятора при установочном начальном угле ОЗ, равном 20 град. Кривые 2, 3, 4 - результирующие. Они получены при совместной работе центробежного регулятора и электронного корректора при установочных углах 17, 0 и -13 град.

Корректор (рис.3) состоит из узла запуска на транзисторе VT1, двух ждущих мультивибраторов на транзисторах VT2, VT3 и VT4, VT5 и выходного ключа на транзисторе VT6. Первый мультивибратор формирует импульс задержки искрообразования, а второй управляет транзисторным ключом.

Корректор угла ОЗ
Puc.3 (нажмите для увеличения)

Допустим, что в исходном состоянии контакты прерывателя замкнуты, тогда транзистор VT1 узла запуска закрыт. Формирующий конденсатор С5 в первом мультивибраторе заряжен током через эмиттерный переход транзистора VT2, резисторы R11, R12 и транзистор VT3 (время зарядки конденсатора С5 можно регулировать резистором R12). Формирующий конденсатор С8 второго мультивибратора также будет заряжен. Так как транзисторы VT4 и VT5 открыты, то VT6 будет тоже открыт и замкнет вывод "Прерыватель" блока зажигания через резистор R23 на корпус.

При размыкании контактов прерывателя транзистор VT1 открывается, а VT2 и VT3 закрываются. Формирующий конденсатор С5 начинает перезаряжаться через цепь R7R8R14VD5R13. Параметры этой цепи подобраны так, что перезарядка конденсатора происходит намного быстрее, чем его зарядка. Скорость перезарядки регулируют резистором R8.

Когда напряжение на конденсаторе С5 достигнет уровня, при котором открывается транзистор VT2, мультивибратор возвращается в исходное состояние. Чем чаще происходит размыкание контактов прерывателя, тем до меньшего напряжения заряжается конденсатор С5 и тем меньше будет длительность импульса, сформированного первым мультивибратором. Этим достигнута обратно пропорциональная зависимость между временем задержки искрообразования и частотой вращения коленчатого вала двигателя.

Спад импульса, сформированного первым мультивибратором, через конденсатор С7 запускает второй мультивибратор. Он формирует импульс длительностью около 2,3 мс. Этот импульс закрывает транзисторный ключ VT6 и отключает зажим "Прерыватель" от корпуса и тем самым имитирует размыкание контактов прерывателя, но с задержкой на время т, определяемое длительностью импульса, сформированного первым мультивибратором.

Светодиод HL1 информирует о прохождении импульса от датчика-прерывателя через электронный корректор до блока зажигания. Резистор R23 защищает транзистор VT6 при случайном подключении его коллектора к плюсовому проводу бортовой сети автомобиля.

Защиту устройства от дребезга контактов прерывателя обеспечивает конденсатор С1, который создает временную задержку (около 1 мс) закрывания транзистора VT1 после замыкания контактов прерывателя. Диоды VD1 и VD2 препятствуют разрядке конденсатора С) через прерыватель и компенсируют падение напряжения, возникающее на проводнике, соединяющим двигатель с кузовом автомобиля при включении стартера, что повышает надежность работы электройного корректора во время пуска двигателя. От помех, возникающих а бортовой сети, устройство защищает цепь VD8C9, стабилитроны VD6, VD7, резисторы R2, R6, R15 и конденсаторы С2, C3, Сб.

Частоту вращения коленчатого вала измеряет цепь VD9VD10R25R26PA1. Шкала этого тахометра линейна, так как импульсы напряжения на коллекторе транзистора VT5 имеют постоянную длительность и амплитуду, обеспечиваемые стабилитроном V07. Диоды VD9, VD10 исключают влияние остаточного напряжения на транзисторах VT5, VT6 на показания тахометра. Частоту вращения отсчитывают по шкале миллиамперметра РА1 с током полного отклонения стрелки 1...3 мА.

В корректоре использованы конденсаторы К73-17 - С1, С8, С9; К53-14-С2, С5; К10-7 - C3, С6; КЛС - С4. С7. Резистор R8 - СПЗ-12а, R12 - СПЗ-6, R23 - составлен из двух резисторов МЛТ-0,125 сопротивлением 10 Ом. Диоды КД102Б, КД209А можно заменить на любые из серии КД209 или КД105; КД521А - на КД522. КД503, КД102, КД103, Д223 - с любым буквенным индексом. Стабилитроны КС168А, Д818Е можно заменить на Другие с соответствующим напряжением стабилизации. Транзисторы КТ315Г можно заменить на КТ315Б, КТ315В, КТ342А, КТ342Б; КТ361 Г - на КТ361Б, КТ361В, КТ203Б, КТ203Г; КТ815В - на КТ608А, КТ608Б.

Детали устройства смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертеж печатной платы и расположение деталей на ней показаны на рис. 4.

Корректор угла ОЗ
Puc.4

Для налаживания устройства необходим источник питания напряжением 12...14 В, рассчитанный на ток нагрузки 250...300 мА. Между проводником от резистора R23 и плюсовым выводом источника питания на время настройки подключают резистор сопротивлением 150... 300 Ом с рассеиваемой мощностью 1-2 Вт. На вход устройства подключают имитатор прерывателя - электромагнитное реле. Используют разомкнутую пару контактов; один из них подключают к общей точке резисторов R1, R2, а второй - к общему проводу. Обмотку реле подключают к генератору, обеспечивающему переключение реле с частотой 50 Гц. При отсутствии генератора реле можно питать от понижающего трансформатора, включенного в сеть.

После включения устройства проверяют напряжение на стабилитроне VD6 - оно должно быть 6,8 В. Если корректор собран правильно, то при работе имитатора прерывателя светодиод HL1 должен светиться.

Параллельно транзистору VT3 подключают вольтметр постоянного тока со шкалой на напряжение 2...5 Вис током полного отклонения стрелки не более 100 мкА. Движок резистора R8 выводят а крайнее правое положение. При работающем имитаторе прерывателя подстроечным резистором R12 на шкале вольтметра устанавливают напряжение 1,45 В. При этом напряжении длительность импульса задержки должна быть равна 3,7 мс, а начальный угол 03 равен -13 град. В среднем положении движка резистора R8 вольтметр должен показывать напряжение 1 В, что соответствует нулевому начальному углу ОЗ а в крайнем левом 0,39 В - 17 град (см. табл.1).

Таблица 1

Фк

град

17

15

10

5

0

- 5

-10

-13

t3

мс

0,33

0,56

1,1

1,7

2,2

2,8

3,4

3,7

Uкэ.VT3

В

0.39

0,46

0,64

0,82

1

1.16

1,34

1,45

Наиболее просто (но не вполне точно) корректор можно наладить следующим образом. Движок резистора R12 устанавливают в среднее положение, а движок резистора R8 поворачивают на треть полного угла поворота от положения минимума сопротивления. Повернув корпус распределителя зажигания на 10 град в сторону более раннего зажигания (против движения вала), запускают двигатель и резистором R12 добиваются устойчивой его работы на холостом ходу. Для градуировки шкалы регулятора начального угла необходим автомобильный стробоскоп.

Тахометр градуируют подстройкой резистора R26 (при частоте запускающих импульсов 50 Гц стрелка микроамперметра должна показывать 1500 мин '). Если тахометр не нужен, его элементы можно не монтировать.

Для подключения корректора а удобном для водителя месте устанавливают пятиконтактную розетку (ОНЦ-ВГ-4-5/16-р), на контакты которой выводят проводники от бортовой сети, прерывателя, блока зажигания, корпуса и тахометра (если он предусмотрен). Корректор, смонтированный в кожухе, устанавливают в салоне автомобиля, например, около замка зажигания.

Корректор можно использовать совместно с блоком электронного зажигания, описанным в [6]. Он может работать и с другими тринисторными системами зажигания как с импульсным, так и с непрерывным накоплением энергии на конденсаторе. При этом каких-либо доработок в блоках зажигания, связанных с установкой корректора, как правило, не требуется.

Литература

  • Экономия горючего. Под ред E.. П. Серегина. - М.: Военнмат.
  • Синельников А. Устройство ЭК-1. - За рулем. 1987, № 1, с. 30,
  • Кондратьев Е. Регулятор угла опережения зажигания. - Радио, 1981. № 11. с. 13-15.
  • Моисеевич А. Электроника против детонации. За рулем, 198В № 8. с. 26. 27.
  • Бирюков А. Цифровой октан-корректор. - Радио. 1987. № 10, с. :34-37.
  • Беспалов В. Блок электронного зажигания. - Радио. 1987 № 1. с. 25-27.
  • Автор: В. Беспалов, г. Кемерово; Публикация: Н. Большаков, rf.atnn.ru

    Навигация

    Инструкции по эксплуатации

    Copyright © 2018 Электрические принципиальные схемы.