С помощью этого устройства можно измерять температуру в овоще- и зернохранилищах, в комнате и на улице, а при размещении датчиков в улье - получать дополнительную информацию о состоянии пчелиной семьи в период зимовки, для чего, собственно, и разрабатывался термометр.

Пределы измерения термометра - +50...-50°С. Точность измерения - 0,3°С (зависит от класса примененного микроамперметра). В качестве датчика используется диод Д223, который экранированным проводом соединен (через магнитофонный разъем, установленный на задней стенке улья) с электронным термометром.

Рассмотрим упрощенную схему устройства (рис.1).

Электронный термометр

Датчиком температуры (т.е. термочувствительным элементом) служит кремниевый диод. При комнатной температуре через открытый диод проходит ток 1... 2 мА, падение напряжения обычно составляет 600 мВ. При увеличении температуры воздуха напряжение на диоде линейно уменьшается на 2,2 мВ на каждый градус Цельсия. Такая зависимость четко сохраняется в диапазоне от 0 до 100°С. В качестве индикатора температуры используется чувствительный микроамперметр с нулем посередине шкалы, подключенный к диодам-датчикам через мостовую схему.

Мост считается уравновешенным, если напряжение в точках А и Б одинаково. При нагревании диодов Д1 и Д2, являющихся датчиками температуры, падение напряжения на них уменьшается. При этом баланс моста нарушается и цифровое значение разбаланса показывает стрелка прибора РА1.

Налаживание и калибровка

Предварительно отключив прибор РА1, включают питание и проверяют относительно "-" напряжения в точках А и Б. Они должны быть равны между собой и находиться в пределах 1... 1,2 В. Если напряжение в точке Б равно напряжению питания (4,5 В), значит диоды включены неправильно, их полярность надо изменить на обратную.

Если разность напряжений в точках А и Б небольшая, ее выравнивают подстроечным резистором R4. Добившись удовлетворительного результата, устанавливают минимальное сопротивление резистора R3, включают в схему стрелочный прибор и подают питание. Затем резистором R4 устанавливают стрелку прибора на отметку 20°С (или другую комнатную температуру), контролируя температуру воздуха ртутным термометром. Далее зажимают пальцами измерительные диоды и смотрят на стрелку. Она должна плавно отклоняться вправо и остановиться примерно на делении 30°С. Если стрелка движется влево, надо изменить полярность питания прибора на обратную.

Калибруется термометр в двух точках - в начале и в конце шкалы. Для калибровки начальной точки используется сосуд с тающим льдом, взятым из морозильной камеры холодильника. Температура тающего льда - 0°С. Подстройку ведут резистором R5. Затем датчик температуры (диоды) опускают в воду, температура которой составляет 50°С. В этом случае подстройку производят резистором R3. Для надежности калибровку обеих точек шкалы делают 3 раза, контролируя температуру точек 0°С и 50°С ртутным термометром.

Схема более точного и удобного термометра приведена на рис.2.

Электронный термометр

Он питается от одного гальванического элемента на 1,5 В, что немаловажно, и предназначен для измерения температуры в различных точках улья, что обеспечивает получение информации о состоянии пчелиной семьи.

В качестве датчиков используется диод Д-223 или - при необходимости - группа диодов. Они могут быть объединены на плоской стеклотекстолитовой шине или сгруппированы на проволоке, являющейся общим проводом, а также на отдельных парах проводов для получения информации в точках, разнесенных на необходимое расстояние. При этом надо учитывать, что сопротивление плеча АО (резистор R2 +сопротивление диода или диодов Д-223) должно быть равно сопротивлению плеча ОБ (резистор R10 + сопротивление подстроечника R11).

Если в качестве датчика Д применяется один диод, сопротивление резистора R10 составляет примерно 3.9 кОм, если три диода Д223 - примерно 5,9 кОм. Это обусловлено тем, что сопротивление диода Д223 составляет 720...725 Ом при токе через диод равном Iпр-0,4 мА и 16 Ом - при токе 50 мА.

Термометр представляет собой уравновешенный мост, в диагональ которого включен парафазный усилитель с симметричным выходом на индикатор. В плечо АО моста включено сопротивление кремниевого перехода, являющееся датчиком температуры.

Мост составлен из резисторов R1, R2, R9, R10, подстроечника R11 и сопротивления кремниевого перехода диода Д1. Парафазный усилитель собран на транзисторах VT1 и VT2 типа КТЗ15, КТ342. Желательно чтобы триоды были подобраны по коэффициенту усиления. Нагрузкой коллекторных цепей являются сопротивления R3 и R7. Резистор R6 является общим эмиттерным резистором связи, a R4, R8 и R5 - элементами регулировки чувствительности каскадов.

Шунтирующий подстроечник R5 определяет чувствительность прибора. Базы транзисторов блокированы конденсаторами С1 и С2, включенными в диагональ моста. Микроамперметр с пределами измерения 50-0-50 мкА включен между коллекторами триодов. Питание осуществляется от элемента 1,5 В через гасящий переменный резистор R14.

Настройка

1. Установить питание 1,3 В с помощью R14.

2. Замкнуть базы (отклонение стрелки от "0" допускается на +1 деление). Если стрелка отклоняется более чем на одно деление, следует подобрать резисторы R3 и R7.

3. Разомкнуть базы VT1 и VT2. Опустить датчик в воду со снегом или льдом и установить "0" подстроечником R11 - Температура воды контролируется ртутным термометром.

4. Опустить датчик в воду с температурой 50°С. Если показания микроамперметра не соответствуют отметке 50, стрелку следует установить на эту отметку с помощью резистора R5.

5. Опустить датчик в среду с нулевой температурой и проверить, устанавливается ли стрелка на ноль. Если нет - подстроить R11.

6. Еще раз проверить показания РА1, опустив датчик в воду с температурой 50°С.

Для контроля питания 1,3 В следует подключить микроамперметр к цепи контроля, нажав SI - кнопку П2К, затем подстроечным резистором R14 установить нужное напряжение. Вольтметр калибруется с помощью R13 в пределах 0...5 В при отключении термометра от питания и сравнением его показаний с образцовым вольтметром при этой шкале (0.. .5 В) сопротивление R12=100к, т.к. R=U/I=5/0,05=100 к.

Диоды имеют большой разброс по сопротивлению, поэтому их нужно подбирать. Сначала отбирают один, сопротивление которого оказывается самым большим при комнатной температуре. Подбирают его с помощью цифрового вольтметра-мультиметра типа В7-20 или аналогичного, так как тестером найти диод с самым большим сопротивлением трудно, а вольтметр позволяет измерить падение напряжения на диоде при заданном токе. Этот датчик будет контрольным. Относительно него подбирают дополнительные сопротивления (довески) к другим диодам (рис.3).

Электронный термометр

К выводам диодов подпаивают провода, чтобы диоды можно было опустить в воду, температура которой постоянно контролируется ртутным термометром. С помощью переключателя S4 образцово-контрольный диод (по которому настраивался электротермометр) и испытуемый поочередно подключаются к электротермометру. Подстроечным резистором R1 добиваются одинаковых показаний микроамперметра РА1. Затем, измерив тестером или мультиметром сопротивление подстроечника R1 при отключенных диодах, определяют значение сопротивления довеска - постоянного сопротивления, которое подпаивается последовательно с испытуемым диодом. Таким же образом подбираются довески к другим диодам-датчикам. Подобранные диоды (с довесками) устанавливаются в нужных точках в ульях и подключаются через разъем к термометру. Экран провода подключается к минусовой шине, центральная жила - к R2 термометра.

Термометр можно применять и в других отраслях сельского хозяйства.

Автор: А.Кухаренко, г.Гродно, Беларусь

Основное назначение микросхемы КР1182ПМ1 [1] - плавное включение и изменение яркости ламп накаливания, управление другими нагрузками переменного тока мощностью до 150 Вт, а с дополнительными внешними тиристорами и больше.

Регулировку обычно осуществляют вручную с помощью переменного резистора, подключенного между выводами 3 и 6 микросхемы и зашунтированного конденсатором, создающим нужную задержку включения. Но изменять подводимую к нагрузке мощность можно и электронным способом, подавая управляющее напряжение между указанными выше выводами (плюсом - к выводу 6), как это сделано, например, в [2].

Основной недостаток такого метода - неудовлетворительная регулировочная характеристика. На рис.1 приведена экспериментально снятая зависимость действующего значения напряжения на нагрузке UH от управляющего напряжения Uy (кривая 1). За исключением узкой центральной части, она нелинейна, а при управляющем напряжении менее 0,47 В нагрузка остается выключенной.

Электронное управление фазовым регулятором КР1182ПМ1

Улучшить линейность электронного регулятора удается, подключив, как показано на рис. 2, между выводами 3 и 6 микросхемы полевой транзистор VT1. С увеличением напряжения между истоком и затвором сопротивление канала транзистора растет, что и приводит к увеличению напряжения на нагрузке микросхемы КР1182ПМ1. Резистор R1 ограничивает минимальное сопротивление цепи управления, что уменьшает "мертвую зону" и компенсирует разброс начального тока транзистора.

Электронное управление фазовым регулятором КР1182ПМ1

Верхний участок регулировочной характеристики в значительной мере линеаризуется (кривая 2 на рис. 1). Это объясняется тем, что его изгиб скомпенсирован нелинейностью переходной характеристики полевого транзистора, находящегося в режиме, близком к отсечке. Однако на нижнем участке регулировочной характеристики нелинейность транзистора играет отрицательную роль, что хорошо видно из сравнения кривых 1 и 2.

Дальнейшего улучшения линейности регулирования можно добиться, собрав узел управления на двух транзисторах по схеме, показанной на рис. 3. Напряжение на нагрузке в интервале от 30 В до максимума почти линейно зависит от управляющего (кривая 2 на рис. 1).

Электронное управление фазовым регулятором КР1182ПМ1

Налаживание регулятора, собранного по любой из приведенных схем, сводится к установке начального тока в цепи выводов 3 и 6 микросхемы КР1182ПМ1. Заменив постоянный резистор R1 подстроенным, устанавливают его движок в положение минимального сопротивления и при нулевом управляющем напряжении постепенно увеличивают сопротивление, пока выходное напряжение не начнет расти. После этого резистор заменяют постоянным, сопротивлением, немного меньшим найденного.

Выбор транзистора КП303 И в качестве регулирующего не случаен. По сравнению с другими полевыми транзисторами его переходная характеристика имеет наибольший прогиб в нужной зоне. Можно применить транзисторы КП303 и с буквенными индексами Б, В, Ж, выбрав экземпляры с напряжением отсечки приблизительно 1 В.

Литература

  • Немич А. Микросхема КР1182ПМ1 - фазовый регулятор мощности. - Радио, 1999, № 7, с. 44-46
  • Бирюков С. Стабилизатор частоты проекции кинофильмов для перезаписи на видео. - Радио, 2000, № 10, с. 35,36.
  • Автор: А.Пахомов, г.Зерноград Ростовской обл.

    На светодиодном индикаторе этого прибора показания текущего времени периодически сменяется на значение температуры окружающей среды в месте расположения датчика - обычного полупроводникового диода. Устройство не содержит микросхем, требующих программирования.

    Принципиальная схема часов-термометра приведена на рис. 1. "Часовая" часть построена на широко известных микросхемах К176ИЕ18 (DD4) и К176ИЕ13 (DD6). О принципе их действия и особенностях применения можно прочитать, например, в [1].

    Часы-термометр

    (нажмите для увеличения)

    Основой термометра служит микросхема КР572ПВ6 (DA4) - АЦП двойного интегрирования, - во многом подобная хорошо известным КР572ПВ2 и КР572ПВ5. Основные отличия состоят в повышенной точности преобразования напряжения в код (4,5 десятичных разряда) и выходных цепях, рассчитанных на подключение динамического цифрового индикатора.

    Двоично-десятичные коды цифр результата преобразования поочередно появляются на выходах В1, В2, В4, В8. Каждую цифру сопровождает высокий логический уровень на соответствующем выходе D1 (старший десятичный разряд, в рассматриваемом приборе не использован) - D5 (младший разряд). Импульсы на выходе STB отмечают моменты смены цифр Логический уровень на выходе POL говорит о полярности результата: 1 - положительная, 0 - отрицательная. Необходимые для работы микросхемы DA4 тактовые импульсы частотой приблизительно 120 кГц поступают на ее вход CLK от генератора на элементах DD2.3 и DD2.4.

    На микросхеме КР142ЕН19А (DA3) собран стабилизатор напряжения 2,5 В для измерительных цепей термометра. Конденсатор С11 предотвращает паразитную генерацию. С помощью резистора R21 задан ток (приблизительно 0,14 мА) через датчик температуры - диод VD12. Напряжение на диоде, при неизменном токе линейно зависящее от температуры, поступает на вход IN микросхемы DA4. На ее вход IN+ с движка подстроечного резистора R26 подано напряжение, равное напряжению на диоде VD12 при температуре 0 DC, - приблизительно 600 мВ.

    Образцовое напряжение 200 мВ на входе Uref АЦП устанавливают подстроечным резистором R28. Именно такого значения (по абсолютной величине) достигла бы разность потенциалов входов IN+ и IN- при температуре датчика ±100 °С. Практически интервал измеряемой температуры составляет -60...+99,9 °С.

    Цепь R22C15 защищает вход АЦП от помех и наводок. Конденсатор С19 предназначен для хранения образцового напряжения. Конденсатор С16 и резистор R39 - элементы интегратора. Конденсатор С18 входит в цепь автоматической коррекции нуля АЦП. Диод VD12 звшунтирован конденсатором С13 для устранения наводок частотой 50 Гц, которые способны заметно исказить показания. О работе подобного термометра можно прочитать в [2].

    Микросхема К561ЛС2 (DD7) - четыре элемента И-ИЛИ с общими входами стробирования - поочередно подключает к узлу индикаторов два источника сигналов выбора разряда индикатора: выходы Т1 -Т4 микросхемы DD4 в режиме индикации времени или выходы D2- D5 микросхемы DA4 в режиме индикации температуры. Сигналы с выходов элементов DD7 управляют транзисторами VT8, VT10, VT13, VT14, поочередно включающими индикаторы HG1-HG4.

    На входы DDI - преобразователя двоично-десятичного кода в семиэлементный - сигналы с выходов В1, В2, В4, В8, STB микросхемы DA4 поступают через повторители микросхемы DD8. К его же (преобразователя DD1) входам подключены и выходы микросхемы DD6 Однако управляющий сигнал, подаваемый на вход V DD6 и входы Е и Z DD8, позволяет быть активными только выходам одной из этих микросхем, переводя выходы другой в пассивное (высокоимпе-дансное) состояние Пассивное состояние выходов микросхемы DD6 никак не сказывается на процессе счета времени.

    В результате при лог. 1 на выводе 5 счетчика DD5 индикаторы HG1-HG4 отображают температуру, а при лог. 0 - время. На вход CN этого счетчика поступают секундные импульсы с выхода

    51 микросхемы DD4, поэтому через каждые 4 с уровень на выходе 5, а с ним и режим индикации изменяются. При размыкании контактов выключателя SA1 счетчик остановится в том состоянии, в котором он находился в момент размыкания. Замыкание контактов выключателя SA1 возобновит периодическую смену режимов.

    Через усилители тока на транзисторах VT1- VT7 выходные сигналы преобразователя кода DD1 поступают на аноды индикаторов HG1-HG4. В режиме индикации температуры "лишний" старший разряд индикатора погашен поступающим на вход К преобразователя DD1 сигналом, сформированным элементом DD3.1. Сигнал с выхода элемента DD3.2 при отрицательной температуре включает на индикаторе HG1 элемент g - знак "минус".

    Элемент DD3.3 и транзистор VT11 управляют светодиодами HL1 и HL2. В режиме индикации температуры оба светодиода погашены. В режиме индикации времени светодиод HL2 мигает с частотой 1 Гц всегда, a HL1 - только при замкнутом выключателе SA1. Вторая группа контактов этого выключателя, замыкая цепь излучателя НА1, разрешает подачу звукового сигнала срабатывания будильника.

    Так как вход 12 микросхемы DD8 соединен с общим проводом, в активном состоянии (в режиме индикации температуры) высокий логический уровень с выхода 11 этой микросхемы через ключ на транзисторе VT12 включает на индикаторе HG3 элемент h - десятичную запятую между разрядами единиц и десятых долей градуса.

    Резисторы R48-R56 необходимы для увеличения напряжения высокого логического уровня на выходах микросхемы DA4. Резисторы R3, R13-R16 - нагрузочные в цепях выходов микросхемы DD4 с открытым истоком.

    Узел питания прибора состоит из трансформатора Т1 и двух двухполупериодных выпрямителей. Один из них (на диодах VD3 и VD4) дает напряжение +12 В для питания анодных цепей индикаторов HG1-HG4. Из него же с помощью интегрального стабилизатора DA1 получают напряжение +5 В для питания микросхем прибора. Из напряжения второго выпрямителя (на диодах VD5, VD6) с помощью интегрального стабилизатора DA2 получают напряжение -5 В, необходимое микросхеме АЦП DA4.

    В качестве трансформатора Т1 можно применить любой сетевой с двумя вторичными обмотками на 9 12 В при токе нагрузки не менее 300 мА. Микросхемы DA1 и DA2 заменят любые интегральные стабилизаторы соответственно положительного (например, КР1157ЕН502А) и отрицательного (например, КР1168ЕН5) напряжения 5 В. Стабилизатор отрицательного напряжения в крайнем случае может быть параметрическим на стабилитроне КС156А. Потребляемый по цепи -5 В ток не превышает 3 мА.

    Батарея резервного питания GB1 - три гальванических элемента типоразмера АА, соединенных последовательно. Она предназначена для поддержания хода часов в отсутствие сетевого напряжения. В этом случае напряжение питания от батареи поступает через диод VD13 только на "часовые" микросхемы DD4 и DD6. Чтобы остальные микросхемы, оставленные без питания, не влияли на упомянутые, в связывающие их цепи последовательно включены резисторы R11, R43-R46, а резистор R31 в режиме резервного питания поддерживает низкий логический уровень на входе V микросхемы DD6. Резистор R23 обеспечивает подзарядку батареи GB1 при работе от сети.

    Авторский экземпляр часов-термометра собран в пластмассовом корпусе часов из радиоконструктора "Электроника". Детали установлены на нескольких платах из стеклотекстолита и соединены в основном навесными изолированными проводами. Доступ к осям подстроечных резисторов R26 и R28 - через отверстия в задней части корпуса.

    Вместо указанных на схеме светодиодных индикаторов SC10-21YWA можно использовать любые другие с общим катодом, подходящие по размеру и цвету свечения. Светодиоды HL1, HL2 размещают в зазоре между индикаторами HG2 и HG3. В качестве транзисторов VT8, VT10, VT13, VT14 можно применить любые кремниевые структуры п-p-n с коэффициентом передачи тока не менее 180 и максимальным током коллектора не менее 300 мА. При подборе замены обращайте внимание и на остаточное напряжение коллектор- эмиттер в режиме насыщения, заметно влияющее на яркость свечения индикаторов. У транзисторов КТ530А оно не превышает 0,13 В.

    Звуковой излучатель НА1 - малогабаритный электромагнитный от импортного будильника. Вместо него можно с успехом использовать динамическую головку со звуковой катушкой сопротивлением не менее 30 Ом.

    Импортные аналоги микросхемы КР572ПВ6 - ICL7135 или TLC7135. Некоторые экземпляры подобных АЦП страдают "перекосом" характеристики - результаты преобразования положительного и равного ему по абсолютной величине отрицательного напряжения немного различаются (не считая уровня на выходе POL). Устраняют перекос с помощью диодно-резисторной цепи, подключенной, как показано на рис. 2.

    Часы-термометр

    О налаживании часовой части прибора подробно рассказано в [1]. А для калибровки термометра датчик температуры (диод VD12) помещают в тающий лед или снег и подстроечным резистором R26 добиваются нулевого показания на светодиодном индикаторе. Если этого сделать не удается, подбирают номинал резистора R25. Затем, опустив датчик в горячую воду с температурой, контролируемой образцовым термометром, резистором R28 устанавливают на индикаторе соответствующее значение.

    Яркость свечения индикаторов HG1-HG4 и светодиодов HL1, HL2 при необходимости можно увеличить или уменьшить, подобрав номиналы резисторов R4-R10, R30, R36.

    В заключение хотелось бы поделиться опытом установки датчика температуры вне помещения. Он должен находиться как можно дальше от окон и стен дома, хорошо обдуваться ветром, но быть укрытым от прямых солнечных лучей. Наилучшее место - внешняя часть ограждения балкона. Перпендикулярно к ней крепят горизонтальный деревянный брусок сечением 30x30 мм и длиной приблизительно 500 мм. На удаленном от балкона конце бруска под углом 30° устанавливают солнцезащитный козырек размерами 300x300 мм из фанеры толщиной не менее 10 мм. Под козырьком на удалении 40...60 мм от центра его нижней поверхности и размещают диод VD12, предварительно поместив его во влагозащитную капсулу подходящего объема, например, из-под лекарства. Отверстие в капсуле, через которое выведены соединительные провода, следует герметизировать.

    Литература

  • Алексеев С. Часы автолюбителя. - Радио, 1996, № 11, с. 46-48.
  • Бирюков С. Простой цифровой термометр. - Радио, 1997, № 1, с.40-42.
  • Автор: В.Суров, г.Горно-Алтайск

    Для сохранности овощей в осенне-зимний период года мы пользуемся контейнером (ящиком с двойным дном), подогреваемым внутри лампами накаливания. Заданную температуру в нем поддерживает термостабилизатор, выполненный по приведенной здесь схеме. Используемый в нем операционный усилитель К153УД2 (DA1), работающий как компаратор, обеспечивает постоянство установленной температуры воздуха в "овощехранилище" с точностью до 1°С.

    Экономичный термостабилизатор

    Принцип работы устройства основан на разбалансировке измерительного моста, состоящего из резисторов R1 - R3 и датчика температуры - терморезистора R4. Мост питается напряжением постоянного тока, стабилизированным стабилитроном VD1.

    Переменным резистором R2 устанавливают порог срабатывания электронной части, соответствующий температуре хранения овощей - от 0 до +10 °С (предполагается, что внешняя температура воздуха более низкая, чем внутри контейнера). При этом напряжение на инверсном входе микросхемы DA1 становится меньше, чем на ее прямом входе. Эту разность напряжения операционный усилитель преобразует в управляющий ток, открывающий транзистор VT1. Открываясь, транзистор включает тринистор VS1, а он, в свою очередь, - нагреватель Rнагрев в анодной цепи. Одновременно загорается светодиод HL2, сигнализируя о включении нагревателя.

    Две - три лампы накаливания общей мощностью около 200 Вт обеспечивают нагрев воздуха в овощехранилище до температуры, заданной резистором R2. Ее повышение приводит к уменьшению сопротивления терморезистора R4, балансировке измерительного моста и, как следствие, отключению нагревателя от сети. При остывании воздуха до заданной температуры сопротивление терморезистора возрастает до номинального значения и описанный процесс периодически повторяется.

    Отличительной особенностью предлагаемого термостабилизатора является питание его электронной части однополупе-риодным напряжением сети. Так, при положительной полуволне переменного напряжения на верхнем (по схеме) проводе сети ток протекает по цепи: предохранитель FU1 - ограничительный резистор R7 - конденсатор C3 - диод VD2 и заряжает фильтрующий конденсатор С1 до напряжения 27 В, соответствующего напряжению стабилизации стабилитрона VD1, и далее через светодиод HL1 (индикатор "Сеть") на питание микросхемы DA1 и измерительного моста к предохранителю FU2. При отрицательной полуволне переменного напряжения на том же сетевом проводе ток проходит через предохранитель FU2, диод VD3, конденсатор C3, резистор R7 и предохранитель FU1. Нетрудно заметить, что в это время транзистор VT1, включенный эмиттерным повторителем, закрыт, отсутствует, следовательно, и управляющий ток тринистора VS1 (выполняется требование по ТУ). При использовании однополупериодного питания и импульсного управления тринистором лампы накаливания горят вполнакала, что повышает экономичность и надежность устройства при эксплуатации.

    Коротко о деталях термостабилизатора. Датчиком температуры (R4) служит терморезистор ММТ - 4 на номинальное сопротивление 22 кОм. Транзистор П701 (VT1) можно заменить любым из серий КТ801, КТ807, КТ815, КТ817, КТ819, КТ603, КТ608. Операционный усилитель К153УД2 (DA1) заменим на любой аналогичный, в том числе и из других серий. Переменный (или подстроечный) резистор R2 может быть любого типа. Параметры других элементов устройства указаны на его схеме.

    Автор: В.Величков, г.Пермь

    Предлагаемое вниманию читателей устройство выполнено на современной элементной базе и отличается от ранее опубликованных в журнале конструкций расширенными возможностями и применением для управления им пульта дистанционного управления на ИК лучах.

    Описываемый прибор предназначен для индикации текущего времени, подачи звуковых сигналов в заданное время и индикации температуры в двух точках (в помещении и на улице) в интервале -55...+99 °С с точностью ±1 °С. Время и температура отображаются поочередно (в течение 10, 1 и 2 с соответственно). Установку показаний часов, времени срабатывания будильника, отключение будильника, гашение и зажигание индикатора производят с ИК пульта дистанционного управления (ДУ).

    Будильник подает звуковые сигналы с паузой 10 с: вначале два коротких (примерно по 0,1 с) одиночных, затем столько же сдвоенных (с паузой 0,1 с), а после них - два строенных (с такой же паузой). По истечении минуты строенные сигналы подаются каждую секунду до тех пор, пока будильник не будет отключен (такой "алгоритм" удобен, если в комнате спит ребенок). Имеется функция Snooze (повторение сигнала через определенное время), позволяющая еще немного поспать после первой подачи сигналов. Если индикатор погашен (например, в ночное время, чтобы не беспокоить детей при засыпании), в момент срабатывания будильника он зажигается и до отключения или перехода в режим Snooze показывает текущее время. Предусмотрены короткий звуковой отклик на нажатие кнопок пульта, индикация (светодиодом) прохождения команд с пульта, резервное питание при пропадании напряжения в сети (в этом случае будильник подает непрерывный сигнал).

    Принципиальная схема устройства изображена на рис. 1. Его основа - микроконтроллер DD2 АТ89С4051 [1]. Он управляет работой всех узлов. В его составе имеется энергонезависимая память программ (4 Кбайт), ОЗУ (128 байт), два таймера, система прерываний и др.

    Часы-будильник-термометр с ИК ДУ

    (нажмите для увеличения)

    Для надежного запуска и защиты микроконтроллера от сбоев по питанию применена микросхема КР1171СП47 (DA1). Она удерживает на своем выходе (выв. 3) низкий уровень при напряжении питания менее 4,7 В. Конденсатор С6 задерживает переход в состояние лог. 0 (т. е. запуска микроконтроллера) после того, как напряжение питания станет выше порогового уровня. В крайнем случае эту микросхему можно не устанавливать, применив стандартную схему сброса, рекомендуемую фирмой Atmel. Однако при этом возможны сбои устройства при "провалах" в питании.

    Табло устройства состоит из пяти светодиодных цифровых индикаторов SA08-11GWA фирмы Kingbright. Индикация - статическая. Для снижения яркости свечения в цепь питания индикаторов включены диоды VD5 и VD6. При отображении времени HG1 и HG2 показывают соответственно десятки и единицы часов, HG3 - тире (-), HG4 и HG5 - десятки и единицы минут (например, 22-11), в режиме измерения температуры HG1 индицирует ее знак (только для отрицательных значений), a HG2, HG3 и HG4, HG5 - соответственно численное значение и единицу измерения (например, -18°С для наружного датчика и 23°.С для комнатного, о чем свидетельствует символ "." в четвертом разряде).

    Для управления узлом индикации использовано всего три вывода микроконтроллера: Р1.2 (14) - для передачи данных; Р1.3 (15) - для стробирования каждого бита, выставленного на Р1 2; Р1.4 (16) - для вывода загруженных в DD3-DD7 данных на их выходы. Микросхема 74НС595 [2] представляет собой восьмибитный регистр с последовательным входом и параллельным выходом с защелкой. Это позволяет сначала загрузить в него данные, а только потом подать их на выход. Выходы можно переводить в третье состояние. Каждый вывод может отдавать ток до 35 мА.

    В качестве часов применена микросхема PCF8583 [3], что позволило забыть о том, что время может сбиваться при отсутствии питания (точность хода зависит практически только от кварцевого резонатора ZQ1 на 32768 Гц). В PCF8583 есть статическая память, которая используется для определения первого включения часов (чтобы подготовить и микроконтроллер, и сами часы к нормальному функционированию) и аппаратный будильник. При совпадении установленного времени с текущим на выводе INT (7) появляется низкий логический уровень. В результате замыкается цепь питания электромагнитного излучателя НА1, а на вывод РЗ.З (7) микроконтроллера DD2 подается сигнал прерывания. Далее программно выключается сигнал с вывода INT и управление излучателем переходит к микроконтроллеру (через электронный ключ на полевых транзисторах VT1, VT2). Управляются часы по шине l2C, организованной программно (в микроконтроллере она отсутствует).

    Для подачи звуковых сигналов применен электромагнитный излучатель НСМ1606Х фирмы JL World со встроенным генератором, работающим на частоте около 2200 Гц.

    Батарея GB1 служит для питания микросхемы часов и звукоизлучателя при пропадании напряжения в сети. Как упоминалось, будильник в этом случае подает непрерывный сигнал, который можно выключить только нажатием кнопки SB1.

    Для приема сигналов управления пульта ДУ применен интегральный приемник ИК диапазона SFH506-36 фирмы Siemens [4]. Эта микросхема весьма чувствительна к помехам по цепи питания, поэтому в нее включен фильтр VD4C8C9.

    Питается устройство от стабилизированного преобразователя напряжения на основе микросхемы МC34063 (отечественный аналог - КР1156ЕУ5). Работа таких преобразователей подробно описана в [5]

    Принципиальная схема ИК пульта ДУ показана на рис. 2. Выполнен он на базе малогабаритного калькулятора китайского производства в форме сотового телефона (использованы его корпус, клавиатура и батарея питания, состоящая из двух элементов 389А). В качестве передатчика применена микросхема SAA3010 [6] (аналог - INA3010D ПО "Интеграл") в корпусе SOIC. Эта микросхема работает в системе ИК ДУ RC-5, разработанной фирмой Philips для управления бытовой аппаратурой и получившей широкое распространение (используется во многих телевизорах, в том числе и выпускаемых, например, ПО "Горизонт").

    Часы-будильник-термометр с ИК ДУ

    В режиме ожидания SAA3010 потребляет незначительный ток, что делает эксплуатацию пульта очень удобной - нет необходимости в отдельном выключателе питания. Микросхема переходит в активное состояние при нажатии любой кнопки и возвращается в режим микропотребления при ее отпускании. Используемый номер системы кода RC-5 - 0 (для управления телевизором). При необходимости, например, чтобы не мешать работе с телевизором, если в нем используется тот же стандарт, нетрудно перейти к другой кодировочной таблице. Допустимо применение и готового пульта ДУ от какого-либо бытового аппарата, если позаботиться о перекодировке команд. Ознакомиться с работой ИК ДУ RC-5 можно в статье [7].

    В качестве выносных датчиков температуры применены микросхемы DS1621 фирмы DALLAS. Хороши они тем, что используют для обмена интерфейс 12С, который у нас уже сформирован программно. Это значит что их можно подключить к тем же выводам микроконтроллера, что и часы. Погрешность измерений всецело определяется датчиками и не превышает ±0,5 °С, а точность индикации - 1°С. Более подробную информацию о цифровых датчиках температуры можно получить на сайте [8].

    Несколько слов о расположении датчиков. Внешний необходимо укрыть от прямых солнечных лучей и от потоков воздуха комнатной температуры, проникающих сквозь щели в рамах, а внутренний расположить так, чтобы он был максимально удален от нагревающихся предметов (батареи отопления, светильников и т. п.). Внешний датчик желательно герметизировать, чтобы избежать коррозии печатной платы и т. д. (автор использовал силиконовый герметик). Теплопроводность от этого снижается, но при вяло текущих процессах, таких как изменение атмосферной температуры, это вполне допустимо.

    Часы-будильник-термометр с ИК ДУ

    Назначение кнопок пульта ДУ: "TS" - установка времени. После ее нажатия вводят время в 24-часовом формате с незначащими нулями, т. е. если в данный момент восемь тридцать утра, то 0 8 - 3 0. Убедившись, что время введено правильно, нажимают любую кнопку, и устройство переходит в режим часов.

    "BS" - установка времени срабатывания будильника. Процедура, аналогичная установке времени.

    "OFF" - отключение будильника. Кнопка SB2 в корпусе часов выполняет такую же функцию.

    "LED" - отключение/включение индикаторов.

    Нажатие любой другой кнопки во время подачи сигнала будильником переводит его в режим Snooze.

    Внешний вид пульта ДУ и вид на монтаж основного блока устройства показаны на рис. 3.

    Коды "прошивки" микроконтроллера в виде hex-файла приведены в таблице.

    Исходный текст

    Программа написана на языке С. Это предоставляет возможности для дальнейшей модернизации. Программа разрабатывалась и компилировалась в интегрированной среде Keil mVision2 V2.36. Ассемблер - А51 версии V7.04, компилятор - С V7.04, линковщик - BL51 версии V5.02. Файл проекта - termo.Uv2. Подробное описание компилятора можно найти на сайте [9] (там же можно "скачать" демонстрационную версию.

    Часы-будильник-термометр с ИК ДУ

    (нажмите для увеличения)

    Управляющая программа записана в контроллер с помощью программатора TURBO. Перед программированием нужно проверить соответствие монтажа принципиальной схеме устройства. Правильно собранная конструкция в налаживании не нуждается.

    Литература

  • Microcontroller АТ89С4051. - <http://www.stmel.com/dyn/resource/ prod_document/doc1001 .pdf >.
  • 74НС595; 8 bit serial-in, serial or parallel-out shift register with output latches; (3-state). - <http://www.semiconductors.philJps.coni/ pip/74HC595.html>.
  • PCF8583; Clock/calendar with 240x8-bit RAM. - <http://www.semiconductors.philips.com/ plp/PCF8583.html>.
  • SFH506-36; IR-receiver, demodulator device. - <http://www.stosselshome.de/ datenbl/sfh506-36.pdf>.
  • Бирюков С. Преобразователи напряжения на микросхеме КР1156ЕУ5. - Радио, 2001, №11, с. 38, 39, 42.
  • SAA3010; Infrared remote control trasmit-ter. - <http://www. semiconductors, philips. com/pip/SAA301O.htmIX
  • Ридико Л. И. Применение кода RC-5. - < h ttp ;//www. telesys. ru/p rojects/pro j036/ index.shtml>
  • DS1621; Digital thermometer and thermostat. - <http://www.msxlm-lc.com/ qulck_view2.cfm/qv_pk/2737>.
  • <http://www.keil.com>.
  • Автор: Д.Чибышев, г.Омск

    Навигация

    Инструкции по эксплуатации

    Copyright © 2018 Электрические принципиальные схемы.