Барьерный режим работы транзистора обеспечивает то важное свойство, что широкое варьирование значений L и С в таких генераторах не приводит к заметному изменению уровня выходного ВЧ напряжения (0,5-0,6 В для кремниевых и 0,2-0,3 В для германиевых).

На первый взгляд преимущество генерирования ВЧ напряжения менее 1 В не столь существенно, однако это увеличивает стабильность частоты (как кратко-, так и долговременную). Кроме того, появляется возможность использовать для перестройки варикалы, которые при малых ВЧ напряжениях в значительно меньшей степени ухудшают стабильность частоты генератора.

В [1] по сути приведена барьерная схема дифференциального усилителя, а в [2] дано краткое определение барьерного режима работы транзистора без подробного анализа. В этой связи рассмотрим некоторые важные особенности барьерного режима работы биполярного транзистора, в котором база транзистора по постоянному току соединена накоротко или через резистор с небольшим сопротивлением с коллектором (рис.1). Питание на схему подается через резистор, задающий ток через транзистор, т.е. отсутствует привычная цепь смещения.

Барьерные генераторы ВЧ на биполярных транзисторах
Рис.1

Транзистор в барьерном включении представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Так как напряжение "эмиттер-база" для прямосмещенного p-n-перехода составляет примерно 0,6. .0,7В для кремниевых транзисторов и 0,3...0,4 В для германиевых, то потенциал коллектора и равен этой величине. При напряжении насыщения около 0,1В максимальная амплитуда выходного ВЧ напряжения для схем с кремниевыми транзисторами будет около 0,5...0,6 В и около 0,2...0,3 В с германиевыми.

Ток, протекающий через транзистор, можно приближенно оценить по формуле I=(Uпит-(0,6...0,7 B))/R,(A), где Uпит - напряжение питания, В; R - сопротивление токозадаюшего резистора, Ом. В схеме генератора на рис.1 снимать ВЧ напряжение можно и с другого конца катушки. Однако эта схема имеет существенный недостаток: LC-контур ни одним из своих концов не соединен с "землей", что делает практически невозможной перестройку по частотес помощью переменного конденсатора. Автором предложена схема с заземленным конденсатором (рис.2). Генерация возникнет и в том случае, если С включить между "землей" и базой (переход "база-эмиттер" открыт и обладает весьма небольшим сопротивлением). Такую схему автор успешно использовал в качестве задающего генератора простейшего ЧМ-радиомикрофона. Модуляция осуществлялась с помощью варикапной матрицы КВС111.

Барьерные генераторы ВЧ на биполярных транзисторах
Рис.2

Однако для генерирования частоты с повышенной стабильностью желательно заземлить и один из концов L, что реализовано автором в схеме на рис.3, где ВЧ напряжение можно снимать и с L.

Барьерные генераторы ВЧ на биполярных транзисторах
Рис.3

Заметим, что изменение напряжения питания (если оно не меньше 1 В) при одном и том же значении R все же влияет на частоту генерируемых колебаний. Для уверенной работы транзистора на более высоких частотах необходимо увеличивать протекающий через него ток путем уменьшения В. При использовании КТ315А, КТ361А при Uпит=12 В и R=2200 Ом наблюдалась устойчивая работа всех приведенных выше схем по крайней мере до 110 МГц. Эти схемы имеют высокоомные выходы и нуждаются в высокого качества буферном каскаде и (или) в снятии ВЧ напряжения с 1/8...1/10 части витков L (считая от заземленного конца), иначе неизбежна нестабильность частоты при изменении сопротивления нагрузки. Реактивное сопротивление Сбл на рабочей частоте должно быть не более 1 Ом.

Литература

1. Титце У., Шенк К. Полупроводниковая схемотехника. - М.: - Мир; 1982, с.297
2. Стасенко В. Барьерный режим работы транзистора.- Радиолюбитель 1996, №1, с. 15-17.

Автор: Владислав Артеменко, UT5UDJ, г.Киев; Публикация: Н. Большаков, rf.atnn.ru

Добавить комментарий

Защитный код
Обновить

Навигация

Инструкции по эксплуатации

Модуль RP023 питания 5/3,3 В для беспаечных макетных плат.
Модуль питания для беспаечных плат
Плата представляет собой модуль питания, имеющий в своем составе два стабилизатора напряжений 5 и 3,3 В. Модуль имеет форму и размеры, позволяющие его устанавливать на стандартные макетные платы, используемые на начальном этапе разработки электронных устройств. При этом значительно экономится драгоценное место на макете, которого, как известно, много не бывает. Напряжение каждой шины питания выбирается с помощью установленного на ней переключателя, что позволяет независимо устанавливать требуемое напряжение на каждой из линий питания. Входное напряжение в диапазоне от 5 до 12 В может подаваться на любой из имеющихся разъемов: стандартный круглый разъем типа DJK-02A или miniUSB. Для контроля выходных напряжений на плате имеется индикатор. Технические характеристики: Входное напряжение постоянное, В - 5…12 Нагрузочная способность каждого выхода, А - 1 Габаритные размеры без
Цена 300.00 руб.
Copyright © 2017 Электрические принципиальные схемы.